Math 113 Midterm Solutions

نویسنده

  • Bowei Liu
چکیده

V = U ⊕ U ′, for some other subspace U ′ ⊂ V , by Theorem 3.21. Consider T restricted to U ′. This is a map T : U ′ →W , which is injective, since U ′∩ker(T ) = {0}. And note that injective maps, in general, preserve linear independence: if we have a linearly independent set {~x1, . . . , ~xn} ∈ X in a vector space X, a linear map of vector spaces A : X → Y , and a linear combination 0 = λ1A~x1 + · · ·+ λnA~xn, then 0 = A(λ1~x1 + · · ·+ λn~xn), so λ1~x1 + · · ·+ λn~xn = 0, which implies λ1 = · · · = λn = 0. Hence, choosing arbitrary bases for U and U ′ automatically gives us the desired properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modern Algebra (math 210) Midterm Solutions

This solution set was written by Pokman; Ravi has added some comments and hopefully hasn’t introduced too many errors! 1. Show that a ring in which all ideals are finitely generated cannot have an infinite sequence of ideals Conversely, show that if a ring has no infinite sequence of ideals, then all ideals are finitely generated. Solution. Suppose all ideals of a ring are finitely generated, a...

متن کامل

Stat 310A/Math 230A Theory of Probability Midterm Solutions

with a1, a2 > 0. (Indeed any rank 2 matrix can be written as RA with A as above, and R orthogonal. Hence any affine transformation can be written as h ◦ f with f as claimed and g a rigid motion.) Hence, by Caratheodory uniqueness theorem it is sufficient to show that λ2(ASu(α1, α2)) = |det(A)|λ2(Su(α1, α2)) for all u = (u1, u2) ∈ R, αi ∈ R+ (3) Su(α, β) ≡ { x = (x1, x2) ∈ R : x1 ∈ (u1, u1 + α1]...

متن کامل

Solving Diophantine equations x 4 + y 4 = qz p

We give a method to solve generalized Fermat equations of type x 4+y4 = qz, for some prime values of q and every prime p bigger than 13. We illustrate the method by proving that there are no solutions for q = 73, 89 and 113. Math. Subject Classification: 11D41,11F11

متن کامل

Math 110: Linear Algebra Practice Midterm #2

∗Note The theorems in sections 5.1 and 5.2 each have two versions, one stated in terms of linear operators, one in terms of matrices. The book states most of them in terms of linear operators, whilst in the lecture notes, they are mostly stated in terms of matrices. For example, compare Theorem 5.5 and its corollary in the book with Theorem 5 and its corollary in the lecture notes; also compare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013